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IWORTANT FACTORS  THAT  INFLUENCE  THE 

DETERHINATION  OF  DETECTION  LIMITS 

INTRODUCTION 

A goal in selecting  a  detection  method is to  reliably  measure as small  a 

quantity as necessary  for  the  intended  analysis.  Reliability  in  this 

context  refers  to  accuracy  and  precision of the  method.  Both of these  have 

to  be  high  enough  based  on  the  objective  for  the  measurement. A quick 

screening  test,  for  example,  needs  less  stringent  criteria  than a precise 

quantitative  analysis.  Reliability  also  refers  to  the  absence of any  false 

signals. It is of no  use  that  a  method  can  detect  minute  amounts of a 

compound  if  there are  interferences  from  other  chemicals  that  cannot  be 

distinguished  from  the  compound of interest. Thus  the initial  statement 

contains  another,  quite  different  goal of equal  importance:  specificity. 

Detection limit and specificity  should  be  treated  separately. A detection 

limit is an  exact,  quantitative  measure,  whereas  specificity is a  more 

qualitative  expression  describing  nonrandom  events.  Let  me  insert  here  that 

there are  a number of definitions for  detection  limits,  but  each of them is 

well  defined as a  quantitative  measure. A statistical  analysis  for  the 

detection  limit is possible  because  only  random  fluctuations are  considered 

in  the  calculation. As a  consequence, a detection  limit  becomes  meaningless 

if  there are nonrandom  sources of errors. 

One of the  most  frustrating  sources of nonrandom  distortions  are 

interferences by other  compounds, If an  interference  by  another  chemical  is 

present,  there  is  no way  to  tell if some or all of a  signal  is  due  to  the 
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interference. A second  analysis  using a differbnt  :method  has  to be done in 

order  to  determine  the  amount  of  the  inthrfering  compolind  and  make  the 

necessary  correction in the  first  analysis. 

The  specificity of a method  has  to  be  erihured  independently  from  the 

detection  limit.  Because  it is an inipoptant aspect of a chemical  analysis 

method, I will begin  with some commeilts about  the  specificity  of  detection 

met  hods. 

Specificity of Detection  Methods 

A detection  method is based on a physical  process  that 'is quantified by a 

law  of  nature.  One  example is infrared  absorption:  which is based  on  the 

interaction of light  with  the  vibration of atoms in a molecule.  Another 

example is the  interaction of a charged  molecule  with a conducting  medium. 

Infrared  absorption is a good example  for a very  specific  method  because 

each  molecule  that  has a unique  geometrical  arrangement of atoms  has a 

unique  infrared  spectrum,  The second example, a charge  transfer, is on  the 

opposite  end of the  specificity  scdle.  This  method  cannot  distinguish 

between  an  H-atom of mass 1 or a biochemical  molecule of mass 100,000. All 

it can  do' is count  charges. Why would  anybody  choose a completely 

nonspecific  detection  method?  One  condition  could  be  that  the  method is so 

much  more  efficient  that a much  smaller  quantity  can  be  detected.  But as 

long  as  you  know  that  you are measuring just the  compound of interest, it 

doesn't  matter  if  the  method is specific. 
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The  important  difference is that  if  for  some  reason  you're  using  the  wrong 

compound  for  the  measurement,  the  specific  method  will  tell  you  that  you've 

used  the  wrong  compound,  whereas  the  nonspecific  method  will  just  yield  a 

result  that  does  not  indicate  that  an  error  occurred.  The  best  you  can  hope 

for is that  the  value of the  result  is so unexpected  that  it  gives  a  clue 

that  something is not  correct. 

The  next  level of complication  comes  in  when  mixtures of compounds  are 

considered.  Whereas  methods  that  are  highly  specific  can  sometimes  detect 

compounds  unambiguously  even  in  complicated  mixtures,  nonspecific  methods 

rely  completely  on  pre-separation of the  components  before  analysis.  One of 

the  more  popular  separation  techniques is gas-chromatography ( G C ) .  

So CC, like a l l  other  chromatographic  processes, is not  a  detection  method, 

it just  physically  separates  the  components in a mixture, And because  a 

whole  variety of compounds  will  elude  from a GC in sequence, a very 

nonspecific  detector is often  needed  to  register  them  all. 

When GC is used  with  a  nonspecific  detector  (like  flame  ionization or 

nitrogen-phosphorus  detectors), an identification of the  compound  is  based 

solely on the  retention  time.  There  is a problem  associated  with  the  use of 

retention  times,  however. For a  given  set of operating  conditions,  every 

compound  has  a  specific  retention  time.  But  this  retention  time is not 

unique  to  that  compound:  there are many  compounds  that  would  elude at  the 

same  time  if  they  were  in  the  mixture. So GC can  prove  the  absence of a 

compound  but  not  its  presence.  If a peak is detected at the  retention  time 

characteristic  for a certain  compound,  and  there is independent  reason  to 
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believe  that  this  compound is present  in  the sample,  then  the  probability 

that  the  peak  originated  from  that  compound  is  high,  but  it is not  a  proven 

fact. 

How  does  this  problem of lack  of  specificity  tie  in  with  the  detection 

limit?  The  ability  to  distinguish a signal from noise is not  affected 

directly by interfering  compounds. The detection  limit  only  indicates  that 

level at which  an  instrument  response  can be assumed t o  be real; it does  not 

guarantee or imply  that  what  has  been  measured is actually  the  intended 

information.  Thus  a  lack in specificity  cannot  be  compensated by a 

modification  of  the  detection  limit. So let's  define  what a detection  limit 

is and, equally  important,  what it is  not. 

Definition of Detection Limit 

The  detection  limit is defined as a threshold  that is used to  distinguish 

between  random  noise  and  wanted  information.  If  a  signal is measured  that 

exceeds  this  threshold, it is assumed  that it did not  originate  from  noise. 

There  are  a  number of 'detection  limits'  using  different  formulas  and 

parameters.  Therefore,  one  should  always  explicitely  state  the  basis  for 

the  calculation.  The  selection of these  parameters is somewhat  arbitrary, 

but once they are  chosen, they  have t o  be calculated  from  the  available 

data.  Estimating  the  values of theae  parameters  prohibits  the  use  of  the 

detection  limit  as a quality  control  measure. 

My approach is that  the  detection  limit  should  cover  the  same  steps  that  are 

considered  in  the  calculation of the  concentration.  It is my understanding 
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that  the  standard  operating  procedure  in  this  Department is to  refer 

analysis  results  to  the  final  extract  used in  the analysis;  extraction 

efficiencies  and  uncertainties  are  not  considered.  It follows that  the 

detection  limit  should  not  include  these  factors  either. 

This is in contrast  to,  for  example,  the  recommendation of the  analytical 

methods  committee of the  Royal  Society of Chemistry  (Analytical  Methods 

Committee, 1987). Their  basic  definition  seems t o  be  quite  standard: 

"It is recommended  that  the  detection  limit of an  analytical 

system  be  defined as the  concentration (c,) or amount (qL) 

corresponding t o  a  measurement  level 3uR units  above  the  value 

for  zero  analyte.  The  quantity uB is the  standard  deviation 

of responses of  the  field  blanks. 

I t  is  further  recommended  that  other  usages,  definitions  and 

named  limits be discontinued." 

But I disagree  with  their  use of the  term  analytical  system: 

"Analysts often  refer t o  the  performance  characteristics  (e.g., 

the  precision) of an  analytical  method.  This  usage  is 

misleading  because  'the  method'  per  se  contributes only part 

of the  total  variation  that is observed  during  its  use.  If 

the  method  is  used at a number of separate  locations  and on 

different  occasions,  other  factors  contribute  to  (and  usually 

dominate)  the  total  variation. Such  additional  factors 
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include  the  analyst,  the  environment,  the  brand of instrument 

used, the  quality  of  the  reagents,  the  nature of the  samples, 

the  protocols  used  for  calibration  and  reagent  blank 

correction, etc.  It is these  additional  factors  that,  with 

the  method,  constitute  the  'analytical  'system.'" 

Using  this  definition  of  an  analytical  system  in  the  definition of the 

detection  limit  will  degrade  this  limit  to a least  common denominator. The 

worst  possible  combination  of  factors  will  set  the  detection  limit  for  all 

other  cases. I fail  to  see why, for  example, a laboratory  that  can  measure 

a  compound  very  reliably  should  quote  a  higher  detection  limit  just  because 

another  lab  has  higher  variability in its  procedure.  The above  definition 

also  asks  for  averaging over brands of instruments; I advocate  to  use 

separate  limits if different  brands of CC, for  example,  perform  differently. 

1 prefer  to  calculate  a  detection  limit  just  from  the  noise  level  in  the 

instrument  output  because  ultimately a positive  detection depends on being 

able to  distinguish  a  signal  from  noise,  For  this it is of no  consequence 

what  errors  occurred  before  this  measurement. I t  doesn't matter, for 

example,  if  the  extraction  efficiency  drops  from 100% to 50%; the  amount of 

chemical  needed  for  the  instrument  to  produce a measurable  signal  stays  the 

same.  However, if  one  wants  to  relate  this  (constant)  minimum  detectable 

signal  to  a  concentration  in  the  original  sample, one has to  take  into 

account  all  possible  errors  and  uncertainties in  the  intermediate  steps. As 

this  Department  does  not  take  extraction  efficiencies  into  account,  relating 

the  reported  concentrations  to  the  final  extract,  the  noise  fluctuations in 
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the  instrument  response  are a l l  that is needed  to  establish a detection 

limit. 

Let  me  repeat  here  that  measuring an  instrument  response  that  is  above  the 

detection  limit  only  implies  that  this  response  most  likely was not  caused 

by random  noise. This 'real'  signal  could  still  originate  from  a  noise 

spike or  an  interfering  compound,  and one  has  to  use  other  criteria  than  the 

detection  limit to  make  sure  that  this  signal  is  due  to  the  compound of 

interest.  Unfortunately,  this  distinction is not  made  clear  in  textbooks or 

articles  about  the  detection  limit,  and so I am rephrasing  this  important 

point one  more  time. 

People  often  refer  to a detection  limit as: "The  detection  limit  for 

compound X is a  concentration of y units." This is convenient  and  short, 

but  contains  an  unspoken  assumption.  The  proper  way  to  express  the 

detection  limit  would  be:  "With 99% probability  the  instrument  can 

distinguish  a  signal of z Volts  from  random  noise.  If  this  signal is caused 

by compound X, this  equates  to  a  concentration of y  units."  It is easy  to 

understand  why  everybody  just  uses  the  short  statement.  But  it omits a  very 

important 'if'. The  detection  limit  only  measures  the  ability of an 

instrument  to  separate  a  signal  from  noise.  It  has  absolutely  nothing  to do 

with  the  assignment of the  signal  to  a  certain  chemical. The latter is a 

question of specificity  and  has  to  be  answered by different  means. 

The  detection  limit is given in concentration  terms  only  because  the  final 

analysis  result is expressed as a concentration.  Again,  the  fluctuation  in 

the  instrument  background is the  only  quantity  needed  to  establish a 
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detection  limit  (if  one  wants  to  express  t,his  limit in concentration  terms, 

one has to  establish  the  oalibration  curve, too). So let's  talk about 

background  and  background  noise  next. 

Background  and  Background Noise 

Let  me  first  define  the  terms  signal,  noise,  baokground  and  blank. The part 

of an  instrument  response  that  contains,  any  useful  information is called 

signal. Any  unwanted  fluctuations  in  the  instrument response,are noise. 

When  the  average  noise  level  in  absence of an  input  conaentration is 

nonzero, it is called a background.  These  definitions  are  based  on  what is 

considered t o  be  the  useful (or wanted)  information. 

For instance,  if  one  wants  to  determine  the  mean  and  standard  deviation of 

the  random  fluctuations,  then  what  was  considered  to  be  noise  before  becomes 

wanted  information  and  thus  the signal, And any  change  in  the  response  due 

to  the  detection  of  a  chemical is now  noise  because  it  causes  unwanted 

changes in  the  mean of the  random  fluctuations. So what is signal  and  what 

is noise is always  relative t o  what  one  wants  to  measure. 

A blank is defined  quite  differently. It is the  result of an  analysis when 

the  input  concentration is zero.  In  practice  one  should  distinguish  between 

laboratory  blanks  and  field  blanks,  The  former  tend  to  have  a  smaller 

variability  which  may  underestimate  the  standard  deviation af the  noise 

level. 

For direct  reading  instruments,  background  and  blank  are  identical,  but  for 

methods  like CC they  are  very  different.  Because  in GC analysis  the  signal 
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is derived as the  difference  between  the  instrument  response at a given time 

and  the  interpolated  value of the  background  at  this  time,  the  blank  should 

be  about  zero  no  matter  how  large  the  background. 

It is important  to  distinguish  between  background  and  blank  because  the 

formulas  for  the  calculation of the  detection  limit  are  different.  To 

distinguish  between  the  two,  the  subscript  b  will  be  used  to  refer  to 

background  measurements,  the  subscript  B  to  blank  measurements (see the 

glossary at  the end of this  text). 

The  first  step in  establishing a  detection limit is to  determine  what  the 

smallest  response (rL) is that  can  be  distinguished  from a blank  response 

(rB) with  reasonable  certainty: 

where r is  the mean, uB the  standard  deviation of the  blank  measurements B 

and  k is a  constant. 

Often  this  standard  deviation is taken  from  the  distribution of the  field 

blanks (as in  the  recommendation of the  Royal  Society of Chemistry),  but 

sometimes  this is not  adviseable. For example,  one  cannot  determine  the 

standard  dev.iation of the  blanks  from  the  output of an  integrator. 

Integrators  used  in  chromatographic  analysis  try  to  detect  a  peak  by 

monitoring  the  slope of the  instrument  response.  When  the  slope  rises above 

a  certain  threshold, it starts  integrating.  This  threshold is set high 

enough  to  respond  only  to  'real'  peaks  in  order  to  avoid  that  the  integrator 
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reacts t o  any  random fiuctuation. This Means' that an' inteepator, will always. 

return a value of exactl-y' zero-, fbr We blanks,, unless.  there is a 

contamination or  iriterfe~enoe- p'bolil&.. In: other words;. if  zero .is not: 

within the confidence' lhni:t: fio,~., the. inte;rvmpt Crf. t h e  cal,ibrat ion curwe', it 

indicates  that  there is a problem wi'th, the cjhdmdcal ana.lyfsis:. 

value of zeeo for ariy va-lue below EKid. linib't,.. 1.t- i,s. thus.  i,mposs.tble t o  use 

data proces's.ed, by. an int@g'r%%or for statist icirl  ana,lys'is: when the. data are 

close t o  or below the  integrator Chreahold. Because of th.is  inabili ty,  some 

people determine a detection limit frm sp'iked blanks. 

I f  the  variability of t h e  f ie ld  blmks Cann6t  be determined properly,  the 

noise i n  the  instrument background  can b e  used a s  a measure. In  any case, I 

prefer t h e  Patter methdd as  it takes  the  special  circumstances of each 

measurement i n t o  effeot.. When the detection limit is, based on t h e  

variability i n  the f i s l d  blan'ks determined a t  some po in t  i n  time,  the 

detection limit would give an erroneous imprefjsion of the  quality of the 

data if  the  instrument  noise changes afterwards.  Let's now look a t  how t h i s  

measure  can be used to d i s t ingu i sh  tiatween signal and noise. 

Peak Height 

Often readings  are made  from  an analog  recording of a continuous output  from 

an instrument. Becaulsie these  results  are  usually stored as  a trace on chart 

paper, I am ug ihg  some simulated signal  traces  as examples. Figure 1 shows 

three such noisy, .  flat  baselines with two peaks each: a narrow  peak is 

centered a t  x= 75 and . a  wide one a t  x= 200. The plot on t h e  right  contains 
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the same data  as  the one on the l e f t ,  j u s t  the  y-axis is magnified  ten 

times. The peak heights  are  equivalent  to 2a, 3a and 6u values of the 

background noise, I t  does  not  matter what the  actual  values  for  the 

background or  peak height  are,   al l  I want to convey is a feeling  for  the 

signal-to-noise  ratios. For instance, i f  the  detection limit is se t   t o  3u 

above the background noise,  the middle trace shows  what you're  asking  the 

analyst  to measure. 

As mentioned before,  the  noise  level i n  the background does not have to be 

determined from a separate  blank; i t  can come from  an interference-free  part 

of an instrument  response  containing peaks a t  other  locations. For example, 

i n  Figure l b  the  noise  level could be determined from t h e  f l a t   p a r t  of the 

traces around x =  100 - 150. The traces i n  Figure  la  are  useless f o r  t h i s  

purpose  because  of the low magnification. Determining the  noise  level i n  

the same o u t p u t  as  the  signal is  generally  preferable because i t  can take 

matrix  effects  into  account, and i t  optimizes  the  detection limit for each 

measurement. 

The following arguments  apply to  the  determination of  both peak heights and 

areas, b u t  the  formulas  for peak heights  are  simpler. There are  four 

different  cases t o  consider: 

The peak height h can be equal t o  the  instrument  response. T h i s  is the case 

of a direct  reading  instrument, where 

h =  r 
C 
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and rc denotes  the  instrument  response  for  an  input  Concentration  c. For 

concentrations  near the,detection limit  one  can  assume  that  the  vari,ance of 

the  concentration  measurement is equa1:to the  variance of the  background 

measurement: 

vc= Vb for r = rb C ( 3 )  

In  this  case,  the  variance  and  standard  deviation  for  the  .peak  height  are: 

vh= vb and = g ( 4 )  

If  the  peak  height is determined by subtracting a flat  background,  the 

corresponding  formula is: 

h= r c - 'b (5) 

with  a  variance  and  standard  deviation of:  

vh= 2 * vb and .ah = 1.41 * g (6) 

When  the  background  has  a  nonzero  slope,  these  formulas  have  to  be  modified 

to : 

and 

Vh= 3.5 * Vb and ah= 1.87 * g (8) 

This  assumes that  the  measurement  for  the  peak  maximum (rc) is centered 

between  the  two  background  measurements (rbl and  rb2). 

Thus  the  standard  deviation of the  background  noise  has  to  be  multiplied by 

a  factor  of 1.0, 1.41 and 1.87 when  the  signal is .calculated  from one, two 

or  three  determinations of the  instrument  response,  respectively. 
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The  last  case  for  the  nonzero  slope  still  implies  a  linear  baseline.  Often, 

however,  the  baseline is curved.  When  no  sophisticated  data  analysis 

procedures  are  available,  the  nonlinear  background is generally  approximated 

by a  linear  interpolation at the  base of the  peak. This  introduces a bias 

in  the  peak  measurement  which  can  lead  to  a  significant  over- or 

underestimation.  When  the  curved  background is approximated by a nonlinear 

fitting  function  (polynomial  or  exponential,  for  example), a calculation of 

the error propagation  can  become  quite  complicated  and  would  lead  to an even 

higher  multiplication  factor  for  the  background  noise. 

If one  wants  to  get  statistical  information  about  the  background  noise  level 

in an  instrument  response,  it is necessary  to  use  discrete  sampling  instead 

of an  analog  recording.  Because a peak is measured as a difference  in  the 

instrument  response  before,  after  and  while  a  compound  eludes,  it  is 

necessary  to  determine  the  baseline  fluctuations  that  occur in the  same 

timeframe as the  detection  of  this  compound  (i.e., a few  seconds at most), 

I n  order  to  get  accurate  measurements  on  this  timescale,  it  is  best  to  use a 

computer for the  data  acquisition. I f  one  does  not  use  a  computer  but 

evaluates  the  data  from  a  trace  on  a  stripchart  recorder,  one  cannot 

determine u accurately.  Then  the  peak-to-peak  value  or  the  root  mean b 

square  of  the  noise  has  to  be  used  to  set  the  detection  limit at a  specific 

signal-to-noise (S/N) ratio;  commonly,  the  detection  limit  is  then  set  to 

S/N= 2 (Willard  et al., 1981). The only  problem  with  the  use of a  visually 

determined S/N ratio is that  it  cannot  be  related t o  a certain  probability 

level. 
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Note  that this argument  and  all  further  calculations  are  based  on  the 

assumption  that  the  sample  to be analyzed is homogeneous, If this is not 

true, as may  be  the  case  with  soil  or  even  liquid samples,  different 

aliquots  would  actually  come  from  different  distributions  with  different 

mean  concentrations,  This  type of variability  has  nothing  to  do  with  the 

detection  limit  itself,  Measurements  like  this  should  never  be  used  to 

establish  calibration  curves.  The  resulting  uncertainty  in  the  regression 

may  no  longer  reflect  the  ability of the  method  to  determine a given 

concentration. 

Another  important  point  is  the  measurement of negative  peak  heights. 

Knowing  that  negative  numbers  have  no  physical  meaning, a negative  result is 

often  reported as zero.  But  this  practice  causes  distortion8  in  the 

calculations of mean  and  variance  of  the  blanks. ' When  peak  heights are 

calculated  from  a  difference, as in  Equ. 5, the  instrument  response  rc  for 

c= 0 is expected  to  be  equal  to rb. The  difference  between  two  measurements 

of rb will  be  negative  half of the  time  assuming  that  the  instrument 

response is normally  distributed  around  a  mean  value of Fb. So even  though 

a  negative  peak  height  has  no  physical  meaning, it is a very  real  result 

that  has  to  be  reported  as  such. 

This implies  that  the  laboratories  would  be  required  to  report  the  raw  data. 

A 'not  detected'  result is not  a  raw  data  item. It is a  decision  made  after 

comparing  the  analysis  result  with  the  noise  level  (i.e.,  the  detection 
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limit). For proper  statistical  treatment of the data,  however,  the  raw  data 

are  essential. 

After  talking  about  background  noise  and  peak  heights,  let's  take a look at 

the  second  ingredient  needed  for a detection  limit,  the  calibration  curve. 

Calibration  Curve 

Three  factors  influence  the  decision  about  how to  establish a calibration 

curve:  the  spread of the  data,  the  error of the  measurement  and  the  model 

used t o  fit  the  data. 

There  are  three  ranges  that  have  to be  matched:  the  concentration  range of 

the  actual  samples,  the  measurement  range of the  instrument  and  the  range 

where  the  fitting  function is valid.  It  makes  a  difference  to  the  design of 

calibration  measurements  if  it is known  independently  that  the  model is 

applicable.  Once it has  been  shown  that  the  model  is  appropriate,  the 

number of calibration  points  can  be  cut  down  to a minimum. The  minimum 

number of points is equal  to  the  number of parameters in the  fitting 

function  (i.e.,  two for a  straight  line [y= a1 + a2 * x], three  for an 

exponential [ y =  a1 + a2 * exp  (a3 *x)]). This  minimum  number  is  generally 

used  only  for  calibration  checks. The  original  calibration  curve  should 

contain  more  concentration  levels to make  sure  that  the  model  fits. 

But  even  if  the  model  fits  the  points  very  well,  it  is no proof  that  this  is 

the  'right'  model  which  describes  all  possible  intermediate  values. For 

example,  calibrations  that  involve  complicated  reaction  schemes  may  yield  an 

S-shaped  curve.  In  these  cases  even  a  three  point  calibration is not good 
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enough  to  distinguish  between  S-shape  and  linear  relationship.  If  the  'thr,ee 

points are not  on  a  straight  line,  a  linear  ,relationsh.ip  can  be  ruled  out,. 

However,  if  the  points  are  on  a  straight  line,  it  does  not  follow  that an 

S-shaped  curve is ruled  out. .On this  S-shaped  curve one can  find  an 

infinite  number of sets of three  points  that  each  lay on a  straight  line. 

Thus  a  straight  line  may  fit  those  calibration  points  very  well,  bu.t  will 

yield  wrong  ,results  for  intermediate  values. 

As a  consequence,  the  number of .points needed for  a  calibration  curve 

depends not  only  on  the  selected  fitting  function  but  also  on  the  models 

that  have t o  be  disproved.  If  one  wants  to  distinguish  between  a  linear 

relationship  and  an  n-th  order  polynomial,  for  example,  one  has  to  make at 

least n+l different  measurements. 

The  magnitude  and  distribution  of  the  errors  associated  with  a  measurement 

determine  if  it  is  advantageous t o  make  replicate  measurements.  When  the 

errors  are  nearly  constant  throughout  the  whole range, more  useful 

information is collected by selecting a larger  number of different 

concentrations  instead of a few  levels  with  replications.  Given  that  only  a 

limited  number of measurements is allocated  towards  establishing  a 

calibration  curve, I favor a diversity in concentration  levels  over a large 

number of replications,  For  a  calibration  curve  a  weighted  regression 

usually  does  not  have  much  effect  on  the  parameter  values;  it  mainly  reduces 

the  confidence  limits, A weighted  regression is valuable  only  when  the 

absolute  errors  associated  with  the  measurements are distinctly  different 

between  the ends of the  measurement  range. 
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The  optimum  strategy would  be  to  select  first  one  concentration  each  near 

the  lower  and  upper  limits  and  perform  a  few  replicate  analyses.  If  the 

standard  deviations  at  these  two  levels  differ by less than a factor of two, 

it is not  worth  while  to  make  replications  for  the  intermediate  values. 

One  assumption  made  here is that  the  calibration  data  have a small 

coefficient of variation.  If  it  should  turn  out  that  there is a large 

uncertainty  associated  with  the  calibration  data, I suggest  that  the  whole 

analysis  procedure  be  discarded. A calibration  curve  with  high  precision 

doesn't  have  to  be  right,  but a calibration  with  low  precision is definitely 

not  worth  much. The calibration  curve  is  usually  very  precise  because  the 

sample  preparation  steps  are  often  not  included  in  the  calibration  procedure 

and  thus  no  matrix  effects  occur. 

Calibration  checks  should  be  performed  regularly,  and  the  whole  calibration 

procedure has to  be  repeated  when  the  check  yields  a  result  outside  the 

confidence  limit  for  the  original  regression  line. A calibration  check  for 

a  straight  line  requires  two  points.  When  it is known  that  the  original 

calibration  curve  passes  through  zero,  one  calibration  point  is  sometimes 

replaced by a  blank. This  combination of a  one  point  calibration  check  and 

a  blank  measurement  produces  satisfactory  results  most of the  time  but 

cannot  catch  all  errors, A better  procedure  is  to  select one  point  in  the 

lower  third  and one in  the  upper  third of the  calibration  line. 

A linear  regression  procedure is used  most of the  time  to  calculate  the 

calibration  parameters  from  the  original  data  points.  Therefore, I insert 
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here some remarks  about  linear  regression  before  talking  about  the  detection 

limit . 

Linear  Regression 

When a linear  regression  procedure is used  to fit  a  straight  line of the 

form y= a1 + a2 * x to  the  data  points,  the  main  information  gained  in  this 

procedure  is  the  intercept al, the  slope a2, a  measure  for  the  goodness of 

the  fit  and  sometimes  the errors for intercept  and  slope.  But  there are 

additional,  useful  parameters  derivable  from  the  regression  calculation. 

One  additional  piece of information is the  Confidence  limit  for  the 

regression  line.  This  information  is  used  best  in a graphical 

representation  where  it  provides  an  immediate  impression of the  uncertainty 

in  the  position of the  calibration  line. 

From  an  applied  standpoint, it is  more  useful  to  give  the  confidence  limits 

for  a  concentration  calculated  with  this  regression  line  than  to  present  the 

confidence  limits  for  the  line  itself.  The  formula  for  the  uncertainty in 

the  calculation of a  concentration x from  a  measured  signal  y allows  us to 

attach a confidence  interval  to  any  single  concentration  result  obtained 

using  the  calibration  curve.  This  interval  reflects  only  the  uncertainty 

from  the  limited  precision of the  calibration  procedure,  it does not  cover 

variabilities  introduced  during  the  sample  preparation  steps  (unless  they 

are included  in  the  calibration)  (N.R.  Draper  and H. Smith, 1981; J.C. 

Miller  and J . N .  Miller, 1984). 

18 



Another  factor is the  variation of the  signal  around  the  regression  line 

( ( J ~ / ~  ). A basic  assumption of the  unweighted  least-squares  fit is  that  each 

Point  (including the blank) has a normally distributed variation in the 

Y-direction  with a standard deviation estimated by (J 
Y/X Thus  the  standard 

deviation  for  the  background  measurement ab can be  estimated  from when B/x 
an unweighted  regression  line  has  been  established. A modified  formula  can 

be  used  to  calculate (J y/x for a weighted  regression. 

Often  'unweighted' is understood  to  mean  that  each  point  is of equal 

importance  for  the  regression  curve.  But  all  it  implies  is  that.  each  point 

is considered  equally  in  respect  to  any  possible  errors  in  the  measurement. 

In  other  respects, a linear  regression by least-squares  treats  the  data 

points  very  unequally. Take,  for  example, a dissipation  curve  where  the 

important  quantity is the  slope.  Let's  assume  that  for one of the  points in 

a data  set  the  y-value is changed by a  certain  fraction.  It  can  then  be 

derived  that  the  error  in  the  slope  caused  by  this  change is proportional  to 

the  distance of the  x-value  from  the  mean of the  x-values  and  to  the  y-value 

at this  location. 

This  relationship is shown in Figure 2. The  top  trace is the  regression 

line  with  unequally  spaced  x-values  yielding an off-center  mean at 45. The 

bottom  trace  shows  the  absolute  value of the  relative  error  introduced  when 

the  y-value  at  that  particular x is changed by a factor of two. The  line  is 

curved  because  the  relative  error  depends  also  on  the  y-value  itself,  which 

approaches  zero  for  the  larger  x-values.  If  the  error  introduced had  been 
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assumed  to  be  a  constant,  independent  o'f  the y-value, the  result  w,ould  have 

been two.straight V-shaped  lines.. 

As a consequence,  smaller err0r.s  at  the  extreme  ends of  the  range  have a 

more  pronounced  effect  on  the  slope  than a. very  large  error near the  middle. 

That is why a ca1,ibration  curve.  should not extend  too  far  beyond  the  range 

of interest. A small  error at a high  concentration  level  can  change  the 

slope  noticeably in the  region of: interest. 

Detection  Limit 

Once  the  standhvd  deviation ab of  the  background  measurement % has.  been 

established,  the limit of detecti.on.depends on the  confidence  level  chosen 

and  the  background  subtraction  method  used  (see  page 12). Confidence  levels 

have  to  be  assigned  to  both  errors of the  first  and  second  kind. An error 

of the  first  kind  (type I) is the  error of accepting  a  si,gnal as real  when 

it actually is part of the  background  distribution,.  An error of the  second 

kind  (type 11) is the error of rejecting a real  value as if it were  part of 

the background. 

The  relationship  between  type 6 and  type I1 errors is illustrated  in  Figure 

3 .  The  left  distribution  in  Figure  3a  represents  the  distribution of the 

background  noise. A 95% confidence  level  corresponds  to a ' limit of 

detection at 1.65 ab.  Superimposed in Figure  3a is the  distribution of 

concentration  measurements  whose  mean is equal  to  this  detection  limit. The 

assumption  made  here is that  the  varian.ce vc for a  concentration  measurement 

r near the detection limit is equal t o  the  variance vb of the  background 
C 
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measurement r (Equ. 3 ) .  Half of the  time  a  measurement rc will  be  below b 

the  average  (the  hatched  area  in  Figure 3a) and  will  thus  be  attributed  to 

the  background  noise  distribution  because rc < F + 1.65 ab . In other b 

words,  this  real  signal  will  not be  detected  half of  the  time,  making  the 

type I1 error  level 50%. 

Figure  3b  shows  the  distribution  of  the  background  noise  values  and  the 

distribution for a  concentration of rc = rb + 3.29 ab, where  both  types of 
- 

errors  are  reduced  to 5% levels.  As  indicated  by  the  hatched area, only 5% 

of the  time  will  the  measurement  be  below  the  detection  limit of 1.65 ab. 

Table 1 lists  limits of detection at various  combinations of confidence 

levels  for  type I and  type I 1  errors.  In GC analysis,  baselines  are  almost 

never flat, so a  proper  factor  for  a  detection  limit at the 95% level is 

3 . 0 8 ,  if  type I1 errors  are of no  concern, 

Let  me  try  to  make  the  importance of type I1 errors  clearer  using  an 

example.  Assume  that  a  certain  chemical  poses  a  serious  health  risk  with a 

warning  threshold set to 4 ppb. It is  considered  necessary  that an 

analytical  method shoclld yield  a  positive  result  for  an  ambient 

concentration of 4 ppb  with 99% probability. A simple  method  for  monitoring 

this  compound  is  available  that  has  a  zero  background  and  a  standard 

deviation of the  noise  equivalent  to 1 ppb.  The  detection  limit  based on  a 

99% confidence  interval is then 2.3 ppb. So one can  measure 4 ppb  with  much 
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better  than 99% probability.  But  it is wrong  to  conclude  that  the  method 

can  then  be  used  to  measure  this  chemical at the 4 ppb level. 

There is a big  difference  between  saying  that  a  measured  level of 4 ppb is a 

positive  result  and  saying  that  an  ambient  level  of 4 ppb should  give a 

positive  result.  The  crucial  difference is that  the  measurement of the 

ambient  concentration  has  an  error  associated  with it, too. So a  single 

measurement of the  actual 4 ppb  level  may  yield  an  analysis  result of 3 ppb 

or 5 ppb. More  precisely,  a  measurement of the 4 ppb level  will 99% of the 

time  yield  a  result  above 1.7  ppb. This  lower  limit is below  the  detection 

limit! Thus  the  method is not  able  to  detect  a  'true'  concentration of 

4 ppb in a  single  measurement  with 99% probability,  and  the  method  cannot  be 

used  for  monitoring this chemical.  This  fact is reflected  in  a  detection 

limit of 4.7 ppb for 99% confidence  levels  for  both  error  types  (see Table 

1 ) .  

Limit of Quantitation 

When  a  signal  has  been  recorded  just  above  the  detection  limit, it can  be 

said  that  this  signal did not  originate  from  noise,  but  the  error  in  the 

magnitude of this  signal is rather  large.  Therefore  a  second,  higher  limit 

is sometimes  introduced:  the  limit  of  quantitation  (LOQ) (J.C. Miller  and 

J . N .  Miller, 1984). It  specifies  at  what  level  the  relative  uncertainty  in 

the  measurement  drops t o  a  given  value.  For  example,  if  a 95% confidence 

level  corresponds t o  1.65 ab , a  measured  concentration  must  be at least 

16.5 ub above the  background mean in order  to  get  a 10% relative  error  for 

this measurement.  Table 2 lists  the  limits of quantitation  for  three 
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confidence  levels (90, 95 and 99%) and for  three  error  levels (10, 20 and 

30%). Based  on  a 95% confidence  level  and a 20% error, the  limit of 

quantitation is 15.4 ab above  the  mean  background for  a  sloped  baseline. 

Earlier, I have  made  the  assumption  that  the  standard  deviation in the 

determination of a concentration  near  the  detection  limit is equal t o  the 

standard  deviation of the  background  measurements  (Equ. 3). This is 

generally  not  true for higher  concentrations  where  it is assumed  commonly 

that  the  error in a  measurement is proportional  to  the  measured  value  (see 

Figure 4a): 

Considering  that  the  peak  height is determined  from  a  difference  (Equ. 5) ,  

the  error  in  the  peak  height is given  by: 

Vh vc + v b or ‘h = ( a 2  * r2 C + Q l 5 *  

Figure 4b shows  the  variation of the  relative  error (uh/h) as a  function of 

the  peak  height  h. The  specific  values  used in this  example  are rb= 5,  

(J = 0.5 a= 0.1 . Marked are  a LOD at 2.33 g (equivalent  to  a  Peak  height of b 

1.2) and  a LOQ at 11.6 ab (equivalent  to  a  peak  height of 5.8) .  This  figure 

shows that  for  large  peaks  the  relative  error  becomes  constant  because  the 

contribution of ab becomes  negligible.  As  the  peak  height  approaches zero, 

however,  the  relative  error  grows  towards  infinity. At the  selected LOD, 

for  instance,  it is 66% (for  this  example). 
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To show  that  this is not  just a theoretimi point, I have  included  Figure 5, 

presenting  two  graphs  taken fro!? a paper  about  quality  assurance  during  an 

air  quality  study  (Fujita  and  Collins, 1989). It  shows  the  variability in 

the  analysis of hydrocarbons in ambient  air  between  four  laboratories and 

PAN between  two  laboratories.  Even  tbQHgh  these  graphs dg not  represent  the 

with  the CV increasing  noticeably  for  lower  concentrations. 

Sensitivity  and  Detection  Limit 

As mentioned  earlier,  the  detection  limit  depends  on  the  noise in the 

background  and on  the  calibration  curve.  Thus  one  has  two  options  trying  to 

optimize  the  detection  limit:  One  way  is  ta  reduoe  the  noise  level in  the 

instrument  output,  directly  lowsriqg  the  detection.limit. The other  option 

is  to  increase  the  sensitivity of the  analysis  method. 

Sensitivity is defined  in  analytical  chemistry as the  ratio of the  change in 

the  response of the  instrument  to  the  corresponding  change  in  the 

concentration of the  analyzed  cDmpound.  The  sensitivity of a method  can  be 

taken  direotly  from  the  slope of the  calibration  curve,  i.e.,  the  slope is a 

measure of the  sensitivity (J.C. Miller  and J.N. Miller, 1984). 

With  the  slope of the  regression  line  being  the  sensitivity S, and  the 

intercept being equal t o  the  mean of the  blanks F,, the  regression  function 

y= a1 + a2 * x can  be  rewritten as 
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- 
r - r  - B 

r = r  + S * c  or c=- B S 

Based on Equ. 1 ,  this  relationship  yields  for  the  detection  limit  cL: 

- 
kuB c -  or cL= B 

1 
‘L - ‘B - - U 

L- s - s  S 

Thus  the  detection  limit  cL is proportional  to  the  noise  and  inversely 

proportional  to  the  sensitivity of the  method. 

Figure 6 should  clarify  how  an  increase  in  the  slope o f  the  calibration 

curve  decreases  the  detection  limit.  When  only  the  slope is changed,  the 

background  measurement is not  affected  keeping  the  detection  limit  expressed 

as  an  instrument  response  at  a  constant  level  above  this  background.  When 

this  detection  limit is converted  into  the  corresponding  concentration, 

however,  the  detection  limit  does  change in  proportion  to  the  slope of the 

calibration  curve, 

The  major  assumption  made  here  is  that  the  change in  the  procedure  that 

caused  the  increase  in  the  slope  does  not  affect  the  noise  level. One 

always  has  to  look  at  what  effect  a  change in  procedure  has  on  both  the 

signal  and  the  noise. No matter  how  large  the  gain  in  signal may be, it is 

not  worth  it  if  the  noise  level  increases  at  an  equal or higher  rate. 

Another  way t o  express  this is saying  that  one  has  to  maximize t h e  

signal-to-noise  ratio  and  not  the  signal. 
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Signal-to-noise  Ratio 

The  signal-to-noise (,S/N) ratio  is  defined as the  average  signal  amplitude 

divided by the  average  noise  amplitude,  The  higher  the  value of the S/N 

ratio  the  better  the  measurement.  After  aaqcliring  the  data  the S/N ratio 

can  only  be  improved by decreasing  the  value of the noise,  Simple 

magnification of the  signal  has no effeot  on  the S/N ratio. 

Once  the  analysis  prodedure  is  set,  the  sensitivity of the  method  (and  thus 

the  signal  strength)  is  fixed,  There  is,  however,  a  way  left  to  modify  the 

noise  level  even  after  the  data  have  been  acquired  and  stored  on  magnetic 

media.,  This  process is called  smoothing,  Be  aware  that  this is quite a 

dangerous  manipulation  because  it  also  changes  the  signal  shape (P.R. 

Bevington, 1960). 

Figure 7 shows  the  effect of smoothing  on  some  stored  data.  The  top  trace 

represents  the  original  data  with  approximately 14 samples  taken  across  the 

full  width at half  maximum (FWHM) of the  peak. The  following  traces  were 

derived  from  the  original by low-pass  filtering  using  time  constants 

equivalent  to 2,  4, 8 ,  16 and 32 ahannels. I have  chosen  this  technique as 

an  example  because it show8  the  same  effect as a  time  oonstant  selector  on a 

strip  chart  recorder  or  integrator. So these  samples  represent  also  the 

case of increasing  the  time  constant Of the  data  acquisition  system.  The 

difference is that if' one  selects  the  wrong  time  constant for the  stripchart 

recorder,  the  analysis  has  to be  redone,  while an improper  manipulation of' 

the  stored  data  can  always  be  undone  (provided  that  the  original  data  are 

kept  una1  tered) . 
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Looking  at  Figure 7a, it is obvious  that  smoothing  can  dramatically  reduce 

the  background noise. However, it  is also  apparent  that  the  peak  shape 

becomes  very  distorted. A characteristic  of  those  distorted  peaks in the 

traces is  that  the  maximum is shifted  towards  the  right  and  that  the  falling 

slope is wider  than  the  rising  one. 

Figure  7b  provides  a  graphical  presentation  of  the  effect  that  smoothing  has 

on  both  the  signal  and  the  noise,  making it easier to visualize  the  change 

in  the S/N ratio.  The  graph  shows  that  in  this  example  the  optimum 

operating  conditions  are  achieved for  time  constants  between 4 and 8. Under 

these  conditions  the  ratio of peak  height  to  detection  limit is a  maximum. 

What is true  for  the  data  acquisition, is also  important  in  all  other  steps 

of the  analysis  procedure:  the  signal-to-noise  ratio  is  more  important  for 

the  quality of the  data  than  the  absolute  magnitude of the  signal. 

For any  critical  measurements  near  the  detection  limit, I consider  it  to  be 

most  advantageous  to  store  the  original digitized instrument  output  with 

high  temporal  resolution  on  diskettes.  Then  the  optimum  data  treatment  can 

be  selected  and  applied  to  the  data  afterwards.  When  only  peak  height or 

area  are  stored  no  optimization,  correction or statistical  analysis of the 

associated  noise  can  be  made  any  more. 

The increased  flexibility  afforded by  the  off-line analysis  is  important 

because  there  is  no  standard  procedure  that  yields  optimum  performance  in 

all  cases.  There  are  a  number of methods  to  determine  baselines,  peak 

positions,  peak  heights  and  areas, as well as methods  to  minimize 

interference  from  noise  spikes or overlapping  peaks.  Being  able  to  look  at 
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the  raw  data  and  then  to  select  the  optimum  combination of data  analysis 

procedures,  can  make  all  the  difference  between  a  reasonable  result  and Just 

plain  garbage. 

The  disadvantage is that  this  type  of  data  analysiis  takes  more  time  and 

requires  quite a bit of operator skill, But  peaks  with  a  signal-to-noise 

ratio  of  less  than 10 are  not  suitable  for  routine  analysis anyhow, as an 

analysis  procedure  that  yields  good  results  for  large  peaks  may  produce 

biased  data  for  small ones, Storing  the  raw  data  on  disk,  one  can  still 

evaluate  them  with  a  'black-box'  algorithm  analogous  to  an  integrator  for 

routine  analysis, But  there is always  the  option  to  go  back  and.  reevaluate 

selected  traces  for  optimum  performance. 

CONCLUSION 

I have  tried  to  provide  some  information  about  what  criteria  influence  the 

determination of a  detection  limit. I did not  provide a standard  recipe  for 

the  calculation  of  a  detection  limit  because I don't  think  there is one. 

Almost  everywhere in the  literature  one  will  find  detection  limits  set  to 

three  standard  deviations  above  the  noise.  The  problem is to  find  a  proper 

measure  for  'noise'  and  the  distribution  from  which  the  standard  deviation 

is taken.  How to determine  these  parameters  will  depend  largely  on  the 

chemical  analysis  method  (i.e.,  what  detection  principle is used),  the  data 

acqusltion  method  (single  readout,  stripchart  or  digitized data, for 

example)  and  the  capabilities of the  data  analysis  procedure. 

The important  point is that  for  each  analytical  problem  there is a  rational 

way  to  calculate a detection  limit.  This  limit  allows  the  person  that 
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interprets  the  f inal   results t o  see how likely  the  reported  data could have 

arisen from  random noise, and how the  uncertainty i n  the measurement changes 

over  time. B u t  always keep i n  mind that  the  detection limit is no t  designed 

to  cover systematic  error8  like  interferences from other compounds. 
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FWHM f u l l  width  at half maximum 

LOD limit of detection 

LOQ limit of quantitation 

S/N signal-to-noise  (ratio) 

C concentration 

h calculated  peak  height 

r instrument  response 

S sensitivity of analysis  method 

V variance 

U standard  deviation 

Subscripts: 

B blank measurement 

b instrument  background 

c concentration 

h peak  height 

L detection  limit 
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Table 1: Limits of detection  for  various  confidence  limits  and  baseline 
correction  methods  given as multiples of the  standard  deviation for the 
noise in the  instrument  background. 

Confidence  Limit LOD 

Type Ia)Type IIb) None  Flat  Sloped 
Baseline  Correction  Method 

90%  50% 
90%  90% 

95% 50% 
95%  95% 

99%  50% 
99% 99% 

1.28 1.81 2.40 
2.56 3.63 4.80 

1.65 2.33 3.08 
3.29 4.65 6.16 

2.33 3.29 4.35 
4.65 6.58 8.70 

a Type I error:  accepting  a  result as real  when  it  actually  arises  from 
the  background  noise. 

bType I1 error:  rejecting  a  real  value as if  it  came  from  the  background 
noise. 
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Table 2: Limits  of  quantitation  for  various  confidence  limits,  relative 
errors and  baseline  correction  methods  given as multiples of the 
standard  deviation for the  noise in the  instrument  background. 

Confidence  Relative LOQ 
Limit  Error  Baseline  Correction  Method 

None  Flat Sloped 

90% 30% 4.3 6.0 8.0 
20% 6.4 9.1 12.0 
10% 12.8 18.1 24.0 

95% 30% 5.5 7.8 10.3 
20% 8.2 11.6 15.4 
10% 16.5 23.3 30.8 

99% 30% 7.8 11 .O 14.5 
20% 11.6 16.5 21.8 
10% 23.3 32.9 43.5 
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Figure 1: Demonstration of signal-to-noise  ratios. Peaks with  heights 
equivalent to 20, 3a and 6a of the  background  noise are 
superimposed on a flat,  noisy  baseline. A narrow  peak is 
centered  at x= 75, a wide one  at x= 200. Both  plots  show  the 
same  data;  the  traces  on  the  right  are  magnified 10 times. 
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Time 

Figure 2: a) [top]  Simulated  dissipation  curve. 
b) [bottom]  Error  introduced  into  the  slope  of  the  regression 

line sllown in a) by changing  the  y-value  at  a  single 
x-value by a factor of two,  while  keeping  all  other  data 
points  constant. 
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Figure 3: Normalized  distributions  for  background  measurements (rb) 

with a detection  limit  at 1.65 ob (95% level). Superimposed 

are  distributions for concentration  measurements  (r ) with 
C 

mean  values  equivalent  to F + 1.65 ab [top] and -% + 3.3 g 
[bot tom] .  The hatched areas show  the  fraction of 
concentration  measurements  below  the  detection limit. 

b 
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Figure 4: Dependence of noise  and  relative  error on  signal  strength. 
a)  [left]  This  diagram  represents  the  case  where  the  noise is 

proportional  to  the  signal. The interesting  quantity  for 
the analysis is the  peak  height,  i.e.,  the  difference of 
the sigrlal minus the  background. 

b) [right] This graph shows the  variation of the  relative 
error (100 * noise / peak  height)  with  the  peak  height 
based on the  data  shown  in a). 
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F i g u r e  5: Practical  examples  for  the  theoretical  dependence of the 
relative  error  on the signal  strength  shown  in  Figure 4. The 
top  diagram shows the  coefficient of variation  for  the 
analysis  of  air  samples done by four  different  laboratories 
as a function of the  mean  concentration.  The  bottom  diagram 
shows  the  relative  difference  between  two  methods  for the 
measurement of PAN as a function  of  the mean concentration. 
[Examples  are  from  Fujita  and  Collins, 19891 
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LOD 

Concentration 

Figure 6 :  Effect of increased  method  sensitivity  on  the  detection 
limit.  When  the  sensitivity  is  raised  from S1 to S2, the 
background  value is not  effected,  and  thus  the  limit of 

detection  is at the  same  location  along  the  y-axis.  Because 
of the  change  in  slope,  this  constant  level  translates t o  two 
different  detection  limits  when  expressed as concentrations. 
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F i g u r e  7: Effect of s m o o t h i n g   o n   t h e   p e a k   s h a p e .  

a )  [ l e f t ]  When t h e  raw d a t a  shown i n   t h e   t o p  trace are 
smoothed by l o w - p a s s   f i l t e r i n g   w i t h   t h e   i n d i c a t e d  time 
c o n s t a n t s  the n o i s e   l e v e l  is r e d u c e d ,   b u t  the p e a k   s h a p e s  
become d i s t o r t e d .  

b) [ r i g h t ]  The p e a k   h e i g h t   i n  t h e  data shown i n  a )  is 

p l o t t e d  as a f u n c t i o n  of t h e  time c o n s t a n t  of t h e   l o w - p a s s  
f i l t e r .  Also shown is t h e  c h a n g e   i n   t h e   d e t e c t i o n  limit 
based on the r e d u c e d   n o i s e   l e v e l .   I n   t h i s   e x a m p l e ,  
optimum r e s u l t s  are a c h i e v e d  w i t h  time c o n s t a n t s   b e t w e e n  4 
and 8.  
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